
Morphological oriented and Fault tolerant Recognizing of template
based natural Language Questions on combinatorial Question

Space

Dieter Käppel

Georg-Simon-Ohm Nürnberg University of applied Sciences
Friedrich-Alexander-University Erlangen-Nürnberg [Department of Computer Science 8 (Artificial Intelli-

gence)]
dieter.kaeppel@student.fh-nuernberg.de

drkaeppe@immd8.informatik.uni-erlangen.de
http://bfwspcb9.informatik.uni-erlangen.de/

Abstract. I introduce a new Algorithm mainly based on a modified ver-
sion of the Smith-Watermann-Algorithm, which is normally used for ge-
netic sequence comparison. I use this modified algorithm for recognizing
template based natural language questions. The need for this algorithm is
classifying and parameterisation of formal questions to natural language
interfaces to databases. Methods will be presented to enable the reader to
extract a number of parameters, fixed or varying, from a users question to
the system followed by classifying the parameterised question to a given
set of questions. The recognition process itself works on morphologic ta-
bles to support fault tolerance and permut ations of the user input.

Keywords: Parsing of natural Language, Natural Language Interfaces to
Databases, Template based Questions, Symbolic Information Processing,
Fault tolerant Parsing, Morphological Parsing.

1 Introduction
Since long automated parsing and understanding of natural language is known as a non-trivial process
[1] [2]. To break down the complexity of the process I nor try to understand the natural language user
input neither to recognize the sense behind it. The natural language interfaces to databases are some
approach to exactly define what the interface understands and what not. Considering a database as a
closed world, the parameters of the users question can be reduced to the attributes and their values
taken from the database. Common knowledge can be considered as far as knowledge is part of the
database. The recognition of template based natural language user questions is the outmost part of a
natural language interface to a database. The focus of this article is not on the post processing of the
resulting formal template representations, which are discussed in [3] and [4].

The advantage of the newly introduced algorithm in contrast to existing algorithms for parsing natural
language questions is the fault tolerance and ability of morphological comparison. It is even possible for
the algorithm to recognize multi word attributes in the natural language user questions.

2 Recognizing of template based natural language questions
Recognizing of template based natural language questions allow the user to formulate his questions to a
given database in his language including aliases for technical and database specific terms. The pre-
sented algorithm mainly takes a list of question templates and a list of question attributes as parame-
ters and results in a list of most possibly detected attributes and the most possibly question depending
on the natural language user question, which also is a given parameter to the algorithm.

2.1 Algorithm parameters
On the one hand, the algorithm parameters are used to specify the combinatorial question space. On
the other hand, the natural language user question the database is given as a parameter to the algo-
rithm.

2.1.1 Question template list
Looking for a most efficient form for the list of the question templates, I suggest to use the following,
presented by examples:

What differences are between <arg1> and <arg2>?
What dependencies can be found between <arg1> and <arg2>?
What inductions can be given from <arg1> to <arg2>?
What ordered patterns of <arg1> can be found in <arg2>?
What common occurrences of <arg1> can be found in <arg2>?
What prediction can be given to <arg1>?

Using Extended Backus Naur Form (EBNF), the definitions are:

QuestionTemplate ::= [QuestionPart] { Argument [QuestionPart] } '?'

QuestionPart ::= Word { Word }

Argument ::= '<' ArgumentName '>'

White spaces are not modelled here. QuestionPart are defined to be the parts not relevant to the argu-
ments of the questions and are not substituted within the algorithm. Argument are defined to be the
template arguments of the questions, each with a unique name to distinguish them in further process-
ing steps.

2.1.2 Question attributes list
The attributes for using as question template argument substitutions are given as a simple list. The
standard algorithm does not support recursive substitution of the template parameter lists.

2.2 Algorithm result
The algorithms result consists of the most possible question template from one of the given list as de-
fined in 2.1.1 and a list of recognized question attributes as defined in 2.1.2. There exists two modes in
recognizing the number of given arguments in the users natural language question, which will further
described in 2.3. Independently from the mode the algorithm is running, the resulting list of question
arguments is a attribute-value-pair-list, where each attribute is the ArgumentName from corresponding
argument given by the question template and each value is the extraction from the users given natural
language question matched to the most possible attribute from the attribute list.

For example assume the given natural language user question is 'Are there differences between catz
and dogz?' Further, assume the list of possible question templates given in 2.1.1 applies and the ques-
tion attributes list is birds, cats, dogs and monkeys. Then the result will be:

What differences are between <arg1> and <arg2>?

and

arg1=cats
arg2=dogs

The result can be used to regenerate the question that is most possible to be meant by the user by
substituting the argument list into the most possible question template to:

What differences are between cats and dogs?

That not only recognizes the natural language user question to the system, it also corrects the mis-
spelled or malformed question to the well-formed questions given by the question templates.

2.3 Algorithm modes
There are two modes to run the algorithm. The first is, for each question template to find the corre-
sponding number of arguments, substituting them in the template and to compare the template with
the natural language user question. The second is first to determine the number of arguments and then
only use these question templates for comparing which matches the determined number of arguments.
The danger of the second mode is to recognize arguments in the natural language user question, which
are part of the template. This will result in the disadvantage of not considering question templates with
less arguments and finally not finding the best possible question template.

2.4 Algorithm description
As discussed, the algorithm is mainly divided in two steps. Here, referring to 2.2, the algorithm of mode
one is explicitly described. For each question template as described in 2.1.1 we have to search the
question attributes in the nat ural language user question. Hereby the question attributes are given as
described in 2.1.2.

2.4.1 Morphological transformation
First, all involved character strings have to be transformed into morphological strings. For an even sim-
pler implementation if the algorithm you can skip this step of the algorithm and directly work on the
characters. In this case, whenever talking about morphemes you can read characters. However, beware
that not even equivalence between phonemically equivalent characters will be recognized by the follow-
ing steps and additionally more morphemes must be compared because the reduction effect is not pre-
sent. This results in a drastically worse performance both in time and in quality.

The transformation process reads the given character string from left to right and outputs for each
highest valued morpheme a symbol representing that morpheme. If no entry in the table beginning with
the actual character in the input stream is found, the character is directly copied to the output stream
and the transformation is continued at the next character.

It is useful to enumerate all known morphemes. The morphemes values should be non-negative num-
bers, usually the higher the more characters the morpheme counts and the less possible the occurrence
of the morpheme is. It is very heuristic to create this table.

2.4.2 Question attribute search
The Smith-Watermann-Algorithm will be used to find the best fitting question attribute. The algorithm
results in a numeric value representing the equivalence of two morphological strings. The extension of
the original algorithm is the detection of the begin and the end of the search string in the search space.
This is necessary to remove the possibly misspelled attribute and allow successive searching next
needed attributes. When a found attribute is removed, it is replaced in the natural language user ques-
tion by a delimiter morpheme to prevent the successive steps finding 'enwrapping' attributes with some
morphemes on the left of the removed attribute and some morphemes on the right.

To find the end of the search string, the maximum value of the propagated value of the last search
morpheme is searched in the search space. To find the begin of the search string, the algorithm is
evaluated a second time on the reverse search string and reverse search space. Equal finding the end
of the string, the begin is found at the maximum propagated value in the reverse search space.

2.4.3 Question template search
If the number of needed arguments for one corresponding question template is not found, this question
cannot be the users given question. All following templates with equal or more numbers in arguments
can be skipped for efficiency reasons. If found, the related template is filled with the original attributes
from the question attributes list. This is done by replacing the <arg1>, <arg2>, … by the transformed
morphemes from the question attributes.

After the preparing steps, the natural language user question and the natural language test question
are compared, both in morphological form, by applying the Smith-Watermann-Algorithm a second time.
The resulting value from the algorithm is the final equivalence between the tested template and the
user question.

When done these steps for all question templates, the one with the highest ranking in comparing with
the user question is the question template, which has the highest possibility to match the natural lan-
guage user question.

2.4.4 Configuring the Smith-Watermann-Algorithm
The Smith-Watermann-Algorithm supports a parameter named gap-penalty, in the following shortly
named gap. The gap controls the ability to skip redundant morphemes both in the search string and in
the search space. The higher the gap, the less two strings are considered equal, while having more
unwanted morphemes.

For practical reasons it is useful to apply a higher gap to the question attribute run while applying a
lower gap to the question template run. For the argument gap a value of 4.0 and for the template gap

a value of 05.0 has been evaluated to be useful.

One more value can be configured, that indirectly results from the Smith-Watermann-Algorithm when
using with natural language comparison: the acceptance. The acceptance is the value that the modified
Smith-Watermann-Algorithm at least must result, that a question argument respectively a question
template is recognized. Especially when configuring with question attributes, the value is important for
not recognizing attributes where no attributes are. Using a too low value can result in finding templates
with a high number of arguments in the natural language user question, which are not present. Working
values are 5.0 for the argument acceptance and 5 for the template acceptance. Note that two diffe r-
ent implementations of the Smith-Watermann-Algorithm to render these two values exist.

2.5 Algorithm analysis
Given two strings of characters one of the size n and the other of the size m both the memory and

the time complexity of the Smith-Watermann-Algorithm are ()mnO ⋅ . The memory complexity can be

reduced to ()nO or ()mO if not the complete result matrix is stored. In every step of the algorithm
only the actual and the last row/column is needed to propagate the values through the algorithm. The
complexity also is linearly enlarged by the number of question attributes, by the number of question
arguments and by the number of question templates. So the total time complexity is approximately

()3wO where w is the number of words totally used and exactly ()5cO , where c is the number of

characters totally used. The complexity related to the number of words cannot exactly be given, be-
cause of the variance in words per attribute.

2.6 Algorithm evaluation
Following the example question template list, question attributes and natural language user question
from 2.2 visualizations can be made from the template comparison using the Smith-Watermann-
Algorithm. The darker the colour, the less the sequences of morphemes are corresponding at a defined
position. The two-dimensional integral value of the total algorithm run is a practically good value to
determine the equality of two morpheme sequences, as can be seen in the diagrams. All comparisons
have been made against 'Are there differences between catz and dogz?'

Visualization from comparison to "What common statistics can be made on cats?":

Visualization from comparison to "What prediction can be made on cats?":

Visualization from comparison to "What differences are between cats and dogs?":

Visualization from comparison to "What dependencies are between cats and dogs?":

It is obviously that "What differences are between cats and dogs?" is the best fitting question template,
because it has the greatest areas of highlighted colouring in the diagram.

3 Conclusions and future work
The problems described in 2.2 lead to the use of the (less time efficient) first mode of the algorithm.

In next of kin to the extension of the algorithm, it seems to be possible to parse more complicated
natural language questions through giving up the distinguish between question templates and question
attributes by joining the non-terminals (question templates) and the terminals (question attributes)
together to one list. Then substitution has to be done until questions only consisting of terminals are
produced and can be compared with the given natural language user question. The problem will be to
optimise the exponential complexity generated through the recursive substitution of the templates or
part of them. A promising method should be the successive comparing and stop when no further subst i-
tution seems to be adequate.

Appendix – Code Listings
Public variables, common to all listed functions:

Public Head As Integer
Public Tail As Integer

Dim S() As Single, N As Integer, M As Integer

The Smith-Watermann-Algorithm searching the templates:

Function Distance(Space As String, Search As String, Gap As Single) As Single
 Dim i As Integer, j As Integer, v As Single
 N = Len(Search)
 M = Len(Space)
 Head = 0
 Tail = 0
 ReDim S(N, M)
 For i = 1 To N
 For j = 1 To M
 v = -0.2 - 1.2 * (Mid(Space, j, 1) = Mid(Search, i, 1))
 S(i, j) = max(S(i - 1, j) - Gap, S(i, j - 1) - Gap, S(i - 1, j - 1) + v)
 Distance = Distance + S(i, j)
 Next j
 Next i
 Distance = Distance / (N * M)
End Function

The Smith-Watermann-Algorithm searching the attributes:

Function DistanceExt(Space As String, Search As String, Gap As Single) As Single
 Dim i As Integer, j As Integer, v As Single
 N = Len(Search)
 M = Len(Space)
 Head = 0
 Tail = 0
 ReDim S(N, M)
 For i = 1 To N
 For j = 1 To M
 v = -0.2 - 1.2 * (Mid(Space, j, 1) = Mid(Search, i, 1))
 S(i, j) = max(S(i - 1, j) - Gap, S(i, j - 1) - Gap, S(i - 1, j - 1) + v)
 Next j
 Next i
 For i = 1 To M
 If S(N, i) > S(N, Tail) Then Tail = i
 Next i
 DistanceExt = S(N, Tail)
 For i = 1 To N
 For j = 1 To M
 v = -0.2 - 1.2 * (Mid(Space, M + 1 - j, 1) = Mid(Search, N + 1 - i, 1))
 S(i, j) = max(S(i - 1, j) - Gap, S(i, j - 1) - Gap, S(i - 1, j - 1) + v)
 Next j
 Next i
 For i = 1 To M
 If S(N, i) > S(N, Head) Then Head = i
 Next i
 Head = M + 1 - Head
 If Tail + 1 <= Head Then
 DistanceExt = -10000
 Exit Function
 End If
 DistanceExt = DistanceExt / max2(N, Tail - Head + 1)
End Function

The Function to replace the patterns:

Function ReplacePattern(ByRef Space As String, Search As Collection, _

 Gap As Single, Accept As Single) As Pattern
 Dim act As Single, max As Single, Pattern As Variant, Tmp As String
 Dim User As String, Repl As String
 Dim Pos As Integer
 For Each Pattern In Search
 Tmp = Pattern

 act = DistanceExt(Space, Tmp, Gap) ' Gap = 0.4
 If act > max Then
 max = act
 User = Mid(Space, Head, Tail - Head + 1)
 Repl = Tmp
 Pos = Head
 End If
 Next Pattern
 If max < Accept Then Exit Function ' Accept = 0.3
 Set ReplacePattern = New Pattern
 ReplacePattern.User = User
 ReplacePattern.Pattern = Repl
 ReplacePattern.Pos = Pos
End Function

The functions to extract the patterns. Two functions are used, because the patterns are found in de-
scending order of equivalence but they are needed in order of the question template arguments:

Private Function PatternsT(ByVal Space As String, Search As Collection, Gap As Single,
Accept As Single, MaxCount As Integer) As Collection
 Dim Str As String, i As Integer, Pattern As Pattern
 Set PatternsT = New Collection
 Do
 i = i + 1
 If MaxCount > 0 And i > MaxCount Then Exit Do
 Set Pattern = ReplacePattern(Space, Search, Gap, Accept)
 If Pattern Is Nothing Then Exit Do
 Space = Replace(Space, Pattern.User, "<!>")
 PatternsT.Add Pattern
 Loop
End Function

Public Function Patterns(Space As String, Search As Collection, Gap As Single, Accept
As Single, Optional MaxCount As Integer = -1) As Collection
 Dim List As Collection, max As Integer, i As Integer
 Set List = PatternsT(Space, Search, Gap, Accept, MaxCount)
 Set Patterns = New Collection
 While List.Count > 0
 max = 1
 For i = 2 To List.Count
 If List(i).Pos < List(max).Pos Then max = i
 Next i
 Patterns.Add List(max)
 List.Remove max
 Wend
End Function

References
 [1] I. Androutsopoulos et al.: Natural Language Interfaces to Databases – An Introduc-

tion ; Journal of Natural Language Engineering, Cambridge University Press; Research
Paper no. 709, Department of Artificial Intelligence, University of Edinburgh, 1994.

[2] W. A. Woods et al. The Lunar Sciences Natural Language Information System : Final
Report. BBN Report 2378, Bolt Beranek and Newman Inc., Cambridge, Massachusetts,
1972.

[3] O. Hogl: Konzeption und Realisierung eines Data-Mining-Front-Ends zur Konkretisie-
rung von Benutzerinteressen und eines Data-Mining-Back-Ends zur Abstraktion von
Data-Mining-Ergebnissen; Diplomarbeit Friedrich-Alexander-Universität Erlangen-
Nürnberg, 1998.

[4] Hogl, O. et al.: On Supporting Medical Quality with Intelligent Data Mining, in: Spra-
gue, R. (Hrsg.): Proceedings of the Thirty-Fourth Annual Hawaii International Confer-
ence on System Sciences (HICSS-01), Maui, Hawaii, IEEE Press, January 2001.

